Pinnae and echolocation call differences between *Myotis californicus* and *M. ciliolabrum* (Chiroptera: Vespertilionidae)

WILLIAM L. GANNON¹, RICHARD E. SHERWIN¹, TAGIDE N. DECARVALHO¹, and MICHAEL J. O'FARRELL²

¹Division of Mammals, Museum of Southwestern Biology, and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; E-mail of WLG: wgannon@unm.edu ²O'Farrell Biological Consulting, 2912 N. Jones Boulevard, Las Vegas, NV 89108, USA

We measured the shape of pinnae from fluid-preserved, museum specimens of 33 *Myotis californicus* and 39 *M. ciliolabrum* and cranial characters from 40 skulls of each species. We also measured 40 specimens of *Eptesicus fuscus*, which were used as an outgroup. Significant differences were found in aural shape and tragus height between the two species of *Myotis*. Archived echolocation calls from the two species from across the range segregated, further suggesting that morphological and call characters are intercorrelated. We tested this relationship using 17 *M. californicus* and 12 *M. ciliolabrum* captured in the field for external measurements and echolocation call recordings (n = 1,124 calls in 52 call files, $\bar{x} = 2.3$ call files per released bat), and found significant differences (most P < 0.001) in pinnae and call morphology between *M. ciliolabrum* and *M. californicus* similar to those observed in 'museum' samples. We found that small interspecific differences in pinna shape and size are correlated with differences in the frequency ranges (larger pinna, lower frequency).

Key words: bat calls, Anabat, ear, acoustics, ANOVA, principal component analysis, sexual dimorphism

INTRODUCTION

Two North American bat species that have been historically confused morphologically are *Myotis californicus* and *M. ciliolabrum* (Bogan, 1974, 1999). *Myotis californicus* is common throughout much of western North America, especially in the Colorado Plateau, Great Basin, and higher elevations of the Sonoran and Chihuahuan deserts (Hall, 1981; Hoffmeister, 1986). It occupies arid lowlands but is also common in piñon-juniper and conifer forests. *Myotis ciliolabrum* has a similar distribution as *M. californicus*, however it is most common in mid- to upper elevations of coniferous forest. *Myotis californicus* is an aerial hawking species that forages over or near water, as does *M. ciliolabrum*. Food items commonly associated with these bats are Lepidoptera, Trichoptera, Coleoptera, and Diptera (Black, 1974; Whitaker *et al.*, 1981; Woodsworth, 1981). Both *M. californicus* and *M. ciliolabrum* are most active during the early hours of the evening with foraging beginning shortly after sunset. They hunt and feed rapidly and then seek a night roost to prepare for another foraging bout (Simpson, 1993). When allopatric, both species hunt along margins of tree clumps, edges of tree canopy, over water, and well above ground in open country. In sympatry, their foraging behavior differs. *Myotis californicus* remains aerially hawking over or near the water surface while *M. ciliolabrum* is a gleaner, hunting near rocky bluffs, suggesting spatial resource partitioning (Woodsworth, 1981).

Although difficult to consistently distinguish in the hand, the skull of *M. californicus* is more rounded, the rostrum is narrower, and the coronoid process is lower than in *M. ciliolabrum* (Bogan, 1999). Moreover, other field features that distinguish these two species are: the different pattern of the hair covering the snout, the differences in the thumb length, and the amount that the tail extends from the uropatagial membrane (Constantine, 1998). Nevertheless, the pronounced geographic variation with regards to these characters results in general confusion regarding their taxonomic allocation.

It is generally accepted that bats produce calls that are species-specific (Fenton and Bell, 1981). In fact, new species (phonotypes) have been described initially using only acoustics (e.g., Jones and van Parijs, 1993; Jones et al., 2000). Use of more portable detectors have verified these early discoveries (O'Farrell et al., 1999). O'Farrell and Gannon (1999) showed that the ultrasounds emitted by M. ciliolabrum and M. californicus were distinguished in New Mexico by characteristic frequency (roughly, 40.0 versus 50.0 kHz), maximum frequency (61.1 and 76.0 kHz), minimum frequency (39.2 and 48.5 kHz), and duration (3.9 ms and 2.0 ms; Fig. 1). Similar specific values were reported from sites in Arizona and Wyoming indicating that these call differences are maintained across their range (O'Farrell et al., 1999). Therefore it has been shown that acoustic data recorded from broad scale divide-by detectors with zero-crossing abilities are reliable as a field technique for differentiating these two species. Because of these sonic differences, it may be possible to discover additional, reliable morphological characters useful for distinguishing these two species in hand. We propose that a subtle variation in the shape of pinnae may be shown relative to documented call differences. This makes intuitive sense since pinna and tragus shape may improve the directionality and sensitivity of incoming echoes (Obrist *et al.*, 1993; Altringham, 1996).

MATERIALS AND METHODS

We measured the pinnae of 39 *M. ciliolabrum*, 33 *M. californicus*, and 40 *Eptesicus fuscus* in the collection of the Museum of Southwestern Biology (see Appendix 1). *Eptesicus fuscus* was used in this initial museum collection portion of the study to ensure sensitivity of techniques for detection of differences between the genera (*Eptesicus* versus *Myotis*) by acting as an outgroup.

Also, we initially used fluid-preserved (70% ethyl alcohol) specimens rather than dried skins because the pinnae are more pliable thereby reducing measurement error. Although there is some distortion in the process of fluid preservation (Bininda-Edmonds and Russell, 1992), the distortion was consistent across species. Measurements in the museum portion of the study were not from the same individuals for both calls and pinnae and could only be suggestive of a relationship between call frequency and pinna morphology.

To validate any relationship discovered in the museum-specimen analyses, we also live-captured, measured, and released 17 individuals of *M. californicus* and 12 *M. ciliolabrum*, with successful subsequent recording (1,124 calls in 52 call files; $\bar{x} = 17$ calls per individual bat; range 5–29 calls in each call file). Captures were made in the vicinity of Portal, Arizona (31°55'N; 109°08'W) with releases performed at a nearby heliport pad (see methods in O'Farrell and Gannon, 1999; Appendix 2). All recordings and analyses were done using Anabat version 6.2d (Titley Electronics, Ballina, NSW, Australia) and Analook version 4.7h, respectively (Corben Scientific, Rohnert Park, CA, USA).

On both museum specimens and live captive bats, aural characters were measured on both right and left body sides to the nearest 0.01 mm with an electronic caliper. These included: height of pinna (from base of tragus at bottom of notch to tip of

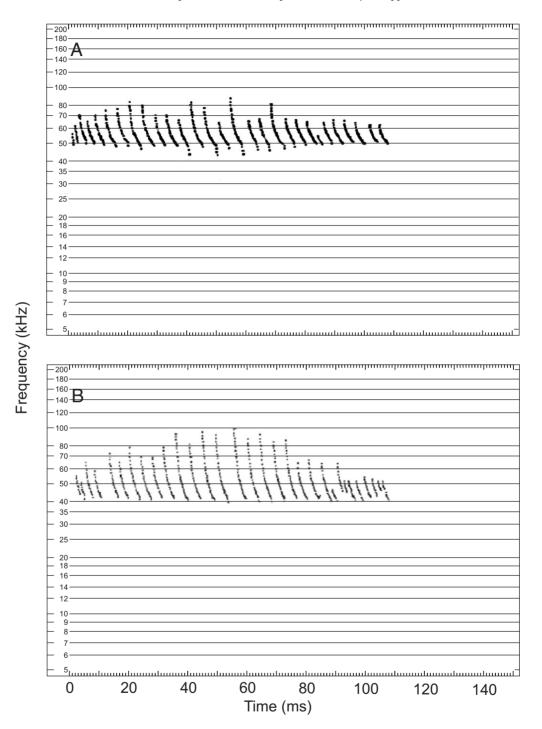


FIG. 1. Sound spectrographs produced by Anabat for *Myotis californicus* (A) and *M. ciliolabrum* (B). These are considered species that are difficult to discern when captured in a net or trap, however relatively simple to distinguish by minimum frequency of 50 kHz (A) and 40 kHz (B), respectively. The temporal axis (*x*-axis) is compressed so that duration of each call in the sequence is shown, but intercall duration is absent. Total call sequence duration cannot be calculated from this figure

pinna); width of pinna at middle height (perpendicular to tip of tragus); height of tragus (from base to tip); and width of tragus (measured at base). Additionally, the length of right and left forearms, a measure of body size in bats, was obtained for all individuals (Kunz *et al.*, 1996). Nevertheless, only right-sided characters, except for principal components analyses, are shown in the present study.

Forty skulls were examined in museum specimens of each species (Appendix 1). Cranial features, taken to the nearest 0.01 mm with an electronic caliper, included: width of cochlea; length of cochlea; width between cochleae; width of skull from meatus to meatus; width of skull measured from outermost edges of cochleae; greatest length of skull (from the back to the tip of the rostrum); and greatest height of skull (from base of cochlea to top of the skull). The cochlear traits rather than bullar ones were measured, because cochleae are directly involved in processing sound (Altringham, 1996).

In the initial analysis we looked at calls from the Bat Call Library (http://talpa.unm.edu/batcall/) for the three bat species measured from the MSB collections. These calls had also been recorded previously with an Anabat detector and stored on the web site. For the initial museum analysis we measured 100, 130, and 190 calls of *M. californicus*, *M. ciliolabrum*, and *E. fuscus*, respectively. The search phase, or consistently repetitive portion of the call, was chosen for detailed analyses due to the more uniform nature of the pulses emitted. The field portion of the study included 641 and 837 calls recorded from live-captured *M. californicus* and *M. ciliolabrum*, respective-

ly. Because of missing values these calls were reduced to a total of 1,124 (*M. californicus*, n = 522 and *M. ciliolabrum*, n = 602).

The following call measurements were examined: minimum frequency, maximum frequency, call duration, 'knee' (the break in slope from the initial downward sweep to the flattest portion of the call). and the number of calls per second (Fig. 1; O'Farrell et al., 1999). Although the last measurement is a function of the bats' behavior and activity, rather than of morphology, this variable often is reported in the literature (e.g., Fenton and Bell, 1981; Altringham, 1996). We therefore included it to maintain comparability with other studies. Calls were analyzed individually and their values were untransformed. Although, there is a possibility for pseudoreplication, the outcome will likely be similar whether analyzing individual calls or call sequence means (Jones et al., 2000; Gannon et al., In press). The 'knee' was dropped from the final museum study analysis because of the complexity of shape of the *E. fuscus* call in contrast to the more simple calls belonging to Myotis; this character was retained in the field study where only the two species of Myotis were compared.

Acoustic and morphometric measurements were analyzed using ANOVA in PROC GLM from SAS (SAS, 1985). Also principal component analyses (PCA) from the SAS package and Ryan-Eynot-Gabriel-Welsch multiple-range test with the Bonferroni correction were applied. Significance in all analyses was determined at $\alpha < 0.05$.

TABLE 1. Descriptive statistics ($\bar{x} \pm$ SD) for morphological variables measured from museum specimens of *E. fuscus* (n = 40), *M. californicus* (n = 39), and *M. ciliolabrum* (n = 33). *F*-values and *P*-levels derived from ANOVA for intergeneric comparisons between *Eptesicus* and grouped *Myotis* are also shown (see Appendix1 for specimens examined)

Channatan	Ta	Taxa		
Character	Eptesicus fuscus	Myotis spp.	 intergeneric differences 	
Pinna height	13.89 ± 0.87	11.48 ± 0.75	11.7**	
Pinna width	9.27 ± 0.73	6.69 ± 0.55	2.3	
Tragus height	5.80 ± 0.34	6.23 ± 0.58	1.5	
Tragus width	2.26 ± 0.18	1.77 ± 0.22	1.5	
Forearm length	47.18 ± 1.56	32.54 ± 1.20	25.3***	
Cochlea length	2.45 ± 0.19	2.20 ± 0.13	34.4***	
Cochlea width	2.06 ± 0.11	1.64 ± 0.09	208.8***	
Greatest length between cochleae	7.11 ± 0.48	5.40 ± 0.32	302.6***	
Greatest length between meati	8.47 ± 0.37	6.27 ± 0.30	516.0***	
Greatest length of skull	18.59 ± 0.01	13.53 ± 0.36	1,713.2***	

* = P < 0.05, ** = P < 0.01, *** = P < 0.001

RESULTS

Museum Specimens

Coarse separation between the museum specimens of *Eptesicus* and *Myotis* was achieved easily for characters of the skull, pinna, and calls. The univariate analysis of external and cranial measurements using all taxa showed a distinct separation of *Eptesicus fuscus* and *Myotis* spp. in body size (as expressed by forearm length and greatest length of skull), skull width, and cochlear lengths and widths (Table 1). Scaled for body size (using forearm length), pinnae of *E. fuscus* were also larger and wider than those of either *M. ciliolabrum* or

M. californicus, although only differences in their pinnae heights were statistically significant. Separately, we examined characters of the two Myotis species represented by museum specimens and found that pinnae dimensions and tragus height were significantly different between them (Table 2). In addition, the GLM model of SAS revealed significant differences between M. californicus and M. ciliolabrum for call duration, and for maximum and minimum frequencies, and frequency at the call's knee (Table 2). Moreover, the principal component analysis (PCA) showed that the height and width of pinnae were the most important features on PC1 (32% variation explained — Table 3), which more or less

TABLE 2. General linear model analysis of variance examining species variation ($\bar{x} \pm SD$) of *M. californicus* and *M. ciliolabrum*. In the top table 72 fluid-preserved museum specimens were measured and 300 archived calls downloaded from http://talpa.unm.edu/batcall. In the bottom table, 29 individuals were hand-captured, measured, and released for call recording (n = 1,124 calls)

	M!:C;	M - :1: -1 -1	Interspecific
Character	M. californicus	M. ciliolabrum	F-statistics
	Museum		
Forearm length	31.83 ± 1.06	33.26 ± 1.33	4.11
Pinna height	11.17 ± 0.74	11.79 ± 0.78	102.33***
Pinna width	6.30 ± 0.52	7.08 ± 0.61	6.78*
Tragus height	6.14 ± 0.60	6.32 ± 0.68	32.55***
Tragus width	1.69 ± 0.25	1.81 ± 0.32	2.24
Call duration	2.56 ± 0.82	2.86 ± 0.54	32.33***
Maximum frequency	71.89 ± 8.20	65.67 ± 9.18	21.28***
Minimum frequency	48.16 ± 2.40	41.51 ± 1.60	11.09**
Mean frequency	58.24 ± 1.39	47.33 ± 2.77	1.33
Frequency at knee	60.00 ± 2.40	53.83 ± 1.57	24.10***
Characteristic frequency	49.89 ± 4.21	40.15 ± 2.12	5.71
	Field		
Forearm length	30.17 ± 1.12	32.90 ± 1.41	74.89***
Pinna height	12.19 ± 0.09	12.73 ± 0.28	64.39***
Pinna width	6.21 ± 0.51	7.18 ± 0.77	5.87**
Tragus height	6.92 ± 0.70	5.95 ± 0.37	67.80***
Tragus width	1.74 ± 0.17	1.88 ± 0.51	0.96
Call duration	2.01 ± 0.50	3.91 ± 1.05	49.28***
Maximum frequency	76.00 ± 10.89	61.10 ± 10.28	39.77***
Minimum frequency	48.55 ± 2.53	39.20 ± 2.11	5.77**
Mean frequency	65.81 ± 3.04	46.87 ± 3.14	0.69
Frequency at knee	54.33 ± 5.23	49.10 ± 3.02	1.42
Characteristic frequency	51.22 ± 3.62	41.26 ± 1.99	2.39*

* = P < 0.05, ** = P < 0.01, *** = P < 0.001

separated *M. californicus* from *M. cilio-labrum* in the morphospace examined (Fig. 2). The next principal component (16%) indicated asymmetry between the external ear structures (Table 3) and did not shown any clear species-based groups. These results allowed us to continue with the field portion of this study (below), which was to sample live individuals and examine those significant characters resolved thus far more closely.

Field Study

Finer resolution of the hypothesis proceeded on wild-caught and recorded specimens within the genus Myotis as suggested by the results of museum specimen analysis (above). Since there was a significant difference within species by sex (ANOVA, F = 13.35, d.f. = 16, P < 0.01 for M. californicus and F = 8.99, d.f. = 11, P < 0.01for M. ciliolabrum) males and females were analyzed separately (Table 4). Multiple range tests showed that male M. californicus differed from the three other categories (females of both Myotis spp. and male *M. ciliolabrum*) in call duration, and minimum and maximum call frequencies (Table 4). Calls plotted for both Myotis species for duration versus characteristic frequency showed typical M. ciliolabrum clustering in the vicinity of 40 kHz with the calls recorded from Portal, AZ dominating the center of that cluster (Fig. 3). Likewise, M. californicus from Arizona occupied the cloud of points between 46 and 60 kHz being in agreement with findings from other locations (Fig. 3). The GLM model of SAS revealed significant differences between M. californicus and M. ciliolabrum for call duration, and for maximum, minimum, and characteristic frequencies, as well as for all body measurements (Table 2). A PCA with call and ear

variables measured from wild-captured animals showed that these variables constituted 69.3% of the total variation for PC1, with call duration and mean call frequency dominating, although in opposite directions (Table 3). Call duration was interrelated with pinna height, whereas mean, minimum, and maximum call frequencies, as well as tragus height worked synergistically. PC2 described ca. 20% of total variation and was dominated by pinna height (Table 3). In general both components resulted either in complete (PC1) or at least partial separation (PC2; see Fig. 4)

TABLE 3. Eigenvector scores, eigenvalues, and variance explained resulting from the principal component (PC) analyses of selected aural and echolocation call characters from museum (top) and wild-captured (bottom) *M. californicus* and *M. ciliolabrum*. The highest values are marked in bold

Character	PC1	PC2				
Museum						
Right pinna height	0.399	-0.152				
Left pinna height	0.408	0.531				
Right pinna width	0.432	-0.172				
Left pinna width	0.467	-0.270				
Right tragus height	0.305	-0.018				
Left tragus height	0.223	0.604				
Right tragus width	0.213	0.010				
Left tragus width	0.181	0.014				
Eigenvalue	2.85	1.48				
Proportion (%)	31.6	16.4				
Cumulative (%)	31.6	48.0				
Field						
Right pinna height	0.250	0.598				
Left pinna height	0.240	0.625				
Right tragus height	-0.377	0.352				
Left tragus height	-0.350	0.320				
Call duration	0.414	0.002				
Minimum call frequency	-0.365	0.001				
Maximum call frequency	-0.365	0.158				
Mean call frequency	-0.421	-0.005				
Eigenvalue	5.55	1.57				
Proportion (%)	69.3	19.6				
Cumulative (%)	69.3	88.9				

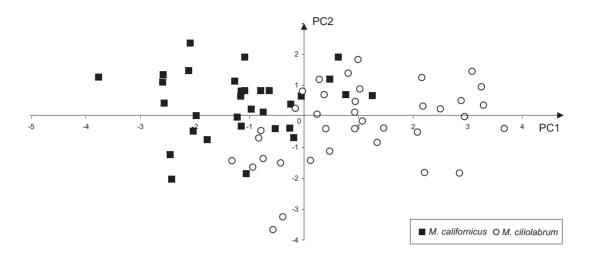


FIG. 2. The relationship between the first two principal components (PC) derived from four pinna characters and four tragus measurements obtained from fluid-preserved specimens of *M. californicus* and *M. ciliolabrum* (see also Table 3)

DISCUSSION

Eptesicus fuscus separated from the species of *Myotis* in all respects: cranial morphology, external morphology, and echolocation call 'morphology.' A quick glance at the bat in hand easily distinguishes it from either *Myotis*. It is intriguing that the two species of *Myotis*, which are both cryptic in the hand (Bogan, 1974), exhibit significant differences in many variables measured in our analyses.

The question of how morphologically similar species can coexist and how mor-

phological character patterns can be used for better understanding the processes of selection is one of the foremost questions in evolutionary ecology (e.g., Bogdanowicz, 1990; Findley, 1993; Arlettaz, 1995). To this end, the multivariate results for both museum and field-based studies reveal that the external ear morphology is distinctive between *M. californicus* and *M. ciliolabrum. Myotis ciliolabrum* has larger pinnae than *M. californicus*. The former also has a significantly longer and wider skull than the latter, however, the cranial differences are not as dramatic as that of size of

TABLE 4. Ryan-Einot-Gabriel-Welsch multiple range tests (compare A, B, and C along rows) for four pinna and four call characters from wild-caught *M. californicus* (nine males and eight females), and of *M. ciliolabrum* (eight males and four females). In all cases $\alpha < 0.05$. Bold indicates the values where male *M. californicus* does not conform to one group or another

Character	M. calif	ornicus	M. cil	M. ciliolabrum	
Character	66	Q Q	55	Q Q	
Pinna height	12.33 ± 0.21 (A)	12.17 ± 0.11 (A)	12.79 ± 0.30 (B)	13.01 ± 0.29 (B)	
Tragus height	6.90 ± 0.02 (B)	7.12 ± 0.07 (B)	5.87 ± 0.22 (A)	6.08 ± 0.09 (A)	
Call duration (ms)	2.99 ± 0.33 (B)	2.08 ± 0.43 (A)	4.02 ± 0.89 (C)	3.99 ± 0.63 (C)	
Minimum frequency	45.66 ± 3.11 (B)	51.02 ± 2.03 (C)	40.55 ± 1.97 (A)	38.32 ± 2.31 (A)	
Maximum frequency	68.30 ± 8.32 (B)	77.00 ± 5.22 (C)	62.91 ± 9.23 (A)	60.91 ± 6.11 (A)	
Mean frequency	65.21 ± 2.87 (B)	60.54 ± 3.44 (B)	50.44 ± 3.64 (A)	45.50 ± 3.75 (A)	

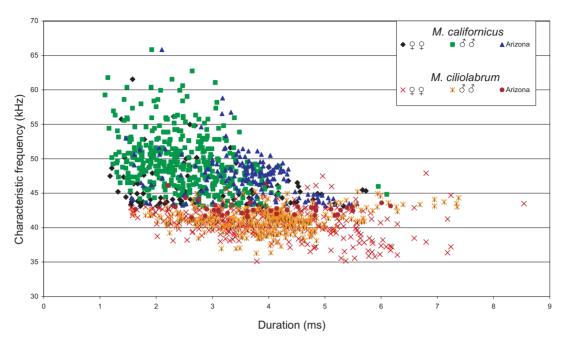


FIG. 3. Bivariate plot of call duration and characteristic frequency of *M. californicus* and *M. ciliolabrum*. Calls are plotted for both sexes of both species from samples across their ranges. Samples recorded from hand-released individuals of both species captured in Portal, Arizona are also shown

pinnae. The frequency range of calls and the number of calls per second of both species are also significantly different. The variation in call duration could be attributable to the echolocating phase of the call (behavior of the bat) and may not be a reliable character to distinguish between the two species; a more conservative sampling approach may tease this out in future analyses.

The frequency range of calls from all three species correlates with the height of the pinnae: the longer the pinna, the lower the call frequency. Increasingly, it has been shown that bats of larger size have a lower call frequency (e.g., Altringham, 1996; Bogdanowicz *et al.*, 1999; Jones *et al.*, 2000). Francis and Habersetzer (1998) also found a strong negative relationship in cochlear size and echolocation frequency among chiropteran families Hipposideridae and Rhinolophidae: the wider the cochlea the lower the call frequency. Although we did measure cochlear width and length, differences were not significant. However, this is the first time that it has been shown that pinna shape and echolocation call characters are statistically linked. The implication of this study is that each species operates under a synergistic set of call characters to produce a unique call, possibly independent of body mass, even with the constraints imposed on bats as an Order to use echolocation for perception (Griffin, 1958).

Empirical data on diet and habitat use will be required to address ecological relationships between *M. californicus* and *M. ciliolabrum* (as, for example, done for Neotropical emballonurids by Kalko, 1985). The larger size of pinnae in *M. ciliolabrum* could be related to the fact that this species is mostly a gleaner in certain (sympatric) circumstances, hence foraging on a different suite of insect prey. Call frequency differences between *M. californicus* and *M. ciliolabrum* are consistent throughout their

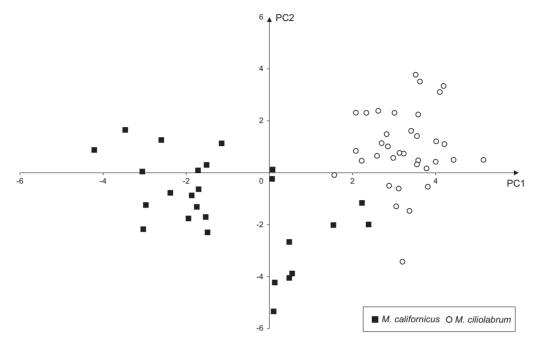


FIG. 4. The relationship between the first two principal components (PC) derived from four aural and four call characters (as in Table 3) obtained from hand-released individuals of *M. californicus* and *M. ciliolabrum*

ranges, both in sympatry and allopatry. But perhaps these differences are maintained to reduce competition due to species recognition or character compression (Gannon, 1997). Analysis of morphological patterns alone may not be sufficient to infer underlving processes. Behavioral considerations in roost selection, the use of habitats, and social structure are factors that are not reflected in morphology necessarily, but can affect outcomes in species interactions (e.g., Fenton, 1985; Aldridge and Rautenbach, 1987). Even 10 kHz difference in minimum frequency of the echolocation call may be sufficient for bats to separate 'auditory space,' thereby reducing interspecific competition or enforcing prey selection processes (also see Schnitzler and Kalko, 1998). Although we may not be able to conclude that this one difference in a call that sweeps 50 kHz is enough to define a species' niche, combined with other morphological and non-morphological features, it may define the species. Other studies have shown that similar sized bats (e.g., *Pipistrellus* spp.) in sympatry have different call frequency values in a single or just a few characters (Jones and van Parijs, 1993; Barlow *et al.*, 1997; see also Novick, 1977 and O'Farrell *et al.*, 1999). We propose that an investigation of correlations between ecological relationships of bat species morphology and behavior could further elucidate this sort of species interaction or community-level questions.

ACKNOWLEDGEMENTS

We thank S. Burt, P. Campbell, T. Snow, and C. Corben for field assistance. L. A. Ruedas assisted with mentoring TND. E. J. Bedrick commented on statistical analyses.discussions with M. S. Burt and S. Haymond greatly improved the content and scope of this paper. L. T. Arciniega assisted with data entry and commenting on an earlier draft of this manuscript, and we acknowledge three anonymous reviewers who made valuable suggestions that were incorporated into the final manuscript. This work was made possible through the Museum of Southwestern Biology and with the support of a grant from the New

Mexico Department of Game and Fish, Share with Wildlife program (University of New Mexico Approved Animal Care and Use Protocol 9711-B). N. M. Gannon appeared in mid-writing of this paper and offered a new perspective on life.

LITERATURE CITED

- ALDRIDGE, H. D. J. N., and I. L. RAUTENBACH. 1987. Morphology, echolocation, and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778.
- ALTRINGHAM, J. D. 1996. Bats: biology and behavior. Oxford University Press Inc., New York, 365 pp.
- ARLETTAZ, R. 1995. Ecology of sibling mouse-eared bats (*Myotis myotis* and *Myotis blythii*): zoogeography, niche, competition, and foraging. Ph.D. Thesis, Horus Publishers, Martigny, Switzerland, 208 pp.
- BARLOW, K. E., G. JONES, and E. M. BARRATT. 1997. Can skull morphology be used to predict ecological relationships between bat species: a test using two cryptic species of pipistrelle. Proceedings of the Royal Society of London B, 264: 1695–1700.
- BININDA-EDMONDS, O. R. P., and A. P. RUSSELL. 1992. Minimization of potential problems associated with the morphometry of spirit-preserved bat wings. Collection Forum, 8: 9–14
- BLACK, H. L. 1974. A north temperate bat community: structure and prey populations. Journal of Mammalogy, 55: 138–157.
- BOGAN, M. A. 1974. Identification of *Myotis califor*nicus and *M. leibii* in southwestern North America. Proceedings of the Biological Society of Washington, 87: 49–56.
- BOGAN, M. A. 1999. Family Vespertilionidae. Pp. 139–181, *in* Mamíferos del noroeste de México (S. T. ALVAREZ-CASTAÑEDA and J. L. PATTON, eds.). Centro de Investigaciones Biológicas del Noroeste, S. C., Baja California Sur, México, 583 pp.
- BOGDANOWICZ, W. 1990. Geographic variation and taxonomy of Daubenton's bat *Myotis daubentoni* in Europe. Journal of Mammalogy, 71: 205–218.
- BOGDANOWICZ, W., M. B. FENTON, and K. DALESZCZYK. 1999. The relationships between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology (London), 247: 381–393.
- CONSTANTINE, D. G. 1998. An overlooked external character to differentiate *Myotis californicus* and *Myotis ciliolabrum* (Vespertilionidae). Journal of Mammalogy, 79: 624–630.

FENTON, M. B. 1985. The feeding behavior of insec-

tivorous bats: echolocation, foraging strategies, and resource partitioning. Transvaal Museum Bulletin, 21: 5–16.

- FENTON, M. B., and G. P. BELL. 1981. Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy, 62: 233–243.
- FINDLEY, J. S. 1993. Bats: a community perspective. Cambridge University Press, Cambridge, 167 pp.
- FRANCIS, C. M., and J. HABERSETZER. 1998. Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, *Rhinolophus* and *Hipposideros*. Pp. 169–179, *in* Bat biology and conservation (T. H. KUNZ and P. A. RACEY, eds.). Smithsonian Institution Press, Washington, D.C., 365 pp.
- GANNON, W. L. 1997. Influence of proximity to rivers on chipmunk vocalization patterns. Pp. 272–286, *in* Life among the museums: papers in honor of James S. Findley (T. L. YATES, W. L. GANNON, and D. E. WILSON, eds.). Special Publication, Museum of Southwestern Biology, The University of New Mexico, Albuquerque, 3: 1–290.
- GANNON, W. L., M. J. O'FARRELL, C. CORBEN, and E. J. BEDRICK. In press. Call character lexicon and analysis of field recorded bat echolocation calls. *In* Adances in the study of echolocation in bats and dolphins (J. A. THOMAS, C. F. MOSS, and M. M. VATER, eds.). University of Chicago Press, Chicago.
- GRIFFIN, D. R. 1958. Listening in the dark. Yale University Press, New Haven, 415 pp.
- HALL, E. R. 1981. The mammals of North America, Volume 1. 2nd ed. John Wiley and Sons, New York, 600 + 90 (index) pp.
- HOFFMEISTER, D. F. 1986. Mammals of Arizona. University of Arizona Press, Tucson, 602 pp.
- JONES, G., and S. M. VAN PARUS. 1993. Bimodal echolocation in pipistrelle bats: are cryptic species present? Proceedings of the Royal Society of London B, 251: 119–125.
- JONES, G., N. VAUGHAN, and S. PARSONS. 2000. Acoustic identification of bats from directly sampled and time-expanded recordings of vocalization. *In* Contributions to the study of bats: field use of acoustic detectors (W. L. GANNON and W. BOGDANOWICZ, eds.). Acta Chiropterologica, 2: 155–170.
- KALKO, E. K. V. 1995. Echolocation signal design, foraging habitats and guild structure in six Neotropical sheath-tailed bats (Emballonuridae). Pp. 259–273, *in* Ecology, evolution, and behaviour of bats (P. A. RACEY and S. M. SWIFT, eds.). Symposia of the Zoological Society of London, 67: xxi + 1–421.

- KUNZ, T. H., D. W. THOMAS, G. C. RICHARDS, C. R. TIDEMANN, E. D. PIERSON, and P. A. RACEY. 1996. Observational techniques for bats. Pp. 105–114, *in* Measuring and monitoring biological diversity: standard methods for mammals (D. E. WILSON, F. R. COLE, J. D. NICHOLS, R. RUDRAN, and M. FOSTER, eds.). Smithsonian Institution Press, Washington, D.C., 409 pp.
- NOVICK, A. 1977. Acoustic orientation. Pp. 74–289, *in* Biology of bats, Volume III (W. A. WIMSATT, ed.). Academic Press, New York, xvi + 1–651.
- OBRIST, M. K., M. B. FENTON, J. L. EGER, and P. A. SCHLEGEL. 1993. What ears do for bats: a comparative study of pinna sound pressure transformation in Chiroptera. Journal of Experimental Biology, 180: 119–152.
- O'FARRELL, M. J., and W. L. GANNON. 1999. A comparison of acoustic versus capture techniques for the inventory of bats. Journal of Mammalogy, 80: 24–30.
- O'FARRELL, M. J., B. W. MILLER, and W. L. GANNON.

1999. Qualitative identification of free-flying bats using the Anabat detector. Journal of Mammalogy, 80: 11–23.

- SAS. 1985. SAS Users's Guide: Statistics, version 5. SAS Institute, Inc., Cary, North Carolina, 956 pp.
- SCHNITZLER, H.-U., and E. K. KALKO. 1998. How echolocating bats search and find food. Pp. 183–204, *in* Bat biology and conservation (T. H. KUNZ and P. A. RACEY, eds.). Smithsonian Institution Press, Washington, D.C., 365 pp.
- SIMPSON, M. R. 1993. Myotis californicus. Mammalian Species, 428: 1–4.
- WHITAKER, J. O., JR., C. MASER, and S. P. CROSS. 1981. Food habits of eastern Oregon bats, based on stomach and scat analysis. Northwest Science, 4: 281–292.
- WOODSWORTH, G. C. 1981. Spatial partitioning by two species of sympatric bats, *Myotis californicus* and *M. leibii*. M.Sci. Thesis, Carleton University, Ottawa, 68 pp.

Received 17 July 2000, accepted 17 January 2001

APPENDIX 1

Fluid-preserved specimens and skulls of *M. californicus* (n = 33 and 40, respectively) and *M. ciliolabrum* (n = 39 and 40, respectively) housed in the Museum of Southwestern Biology, Albuquerque, and examined in the present study:

No.	Sex	Country	State	County	Specific Locality		
M. californicus (fluid)							
35161	3	Mexico	Sonora	Not applicable	17.7 km E (by Road) Imuris, Highway 2		
82371	Ŷ	Mexico	Baja California	N/A	4.5 km up Arroyo Dominquito		
82372	δ	Mexico	Baja California	N/A	4.5 km up Arroyo Dominquito		
82373	3	Mexico	Baja California	N/A	4.5 km up Arroyo Dominquito		
34150	Ŷ	Mexico	Sonora	N/A	6.4 km S El Novillo Dam, Yaqui River		
32146	3	Mexico	Sonora	N/A	Approx. 8 km W San Carlos Bay		
34175	Ŷ	Mexico	Sonora	N/A	Tunnel 15 km E Imuris (by Road) Highway 2		
34174	3	Mexico	Sonora	N/A	Tunnel 15 km E Imuris (by Road) Highway 2		
34176	Ŷ	Mexico	Sonora	N/A	Tunnel 15 km E Imuris (by Road) Highway 2		
45898	Ŷ	USA	New Mexico	Hidalgo	Animas Mts, Gibson Tank		
29267	3	USA	New Mexico	Hidalgo	Granite Gap, 30 km NNE Rodeo		
32524	Ŷ	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		
32514	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		
32515	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		
32516	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		
32527	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		
32528	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		
32529	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts		

No.	Sex	Country	State	County	Specific Locality
32530	δ	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
32531	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
32078	Ŷ	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
29397	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
26717	3	USA	New Mexico	Hidalgo	Sycamore Wells, T33S, R14W
40679	Ŷ	USA	California	Humboldt	12.8 km N, 2.4 km E Arcata
40680	Ŷ	USA	California	Humboldt	12.8 km N, 2.4 km E Arcata
37819	Ŷ	USA	New Mexico	San Juan	1,795 m above sea level
37768	Ŷ	USA	Arizona	Yuma	Buckhorn Tank, 560 m a.s.l.
37769	Ŷ	USA	Arizona	Yuma	Buckhorn Tank, 560 m a.s.l.
37766	3	USA	Arizona	Yuma	Buckhorn Tank, 560 m a.s.l.
37767	3	USA	Arizona	Yuma	Buckhorn Tank, 560 m a.s.l.
48090	Ŷ	USA	Arizona	Yuma	Cabeza Prieta Game Refuge, 357 m a.s.l.
48089	3	USA	Arizona	Yuma	Cabeza Prieta Game Refuge, 357 m. a.s.l.
37992	3	USA	Arizona	Yuma	Tule Tank, Cabeza Prieta Game Range
				M. ciliolabrum	
42841	Ŷ	Mexico	Baja Californi	a N/A	Mission de San Borja
35275	Ŷ	Mexico	Chihuahua	N/A	2.4 km SE El Bosque
27221	3	USA	Colorado	Las Animas	Near Wootton, 2,275 m a.s.l.
24105	3	USA	New Mexico	Bernalillo	Cedar Crest
24099	3	USA	New Mexico	Bernalillo	Manzano Mts, Cedro Canyon
29110	Ŷ	USA	New Mexico	Bernalillo	San Pedro Wash, 3.4 km E and 3.7 km N San
	Ŷ				Antonito
29112	Ŷ	USA	New Mexico	Bernalillo	San Pedro Wash, 3.4 km E and 3.7 km N San Antonito
32191	3	USA	New Mexico	Bernalillo	UNM Campus (Mesa Vista Dormitory), Albuquerque
45899	3	USA	New Mexico	Hidalgo	Animas Mts, New Well, Double Adobe Canyon
32532	Ŷ	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
32068	Ŷ	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
32069	ð	USA	New Mexico	Hidalgo	Sycamore Well, Alamo, Hueco Mts
24087	Ŷ	USA	New Mexico	Lincoln	Fort Stanton Cave
29079	3	USA	New Mexico	Lincoln	Fort Stanton Cave
20623	Ŷ	USA	New Mexico	Lincoln	Gypsum Sink
24106	Ŷ	USA	New Mexico	Rio Arriba	Coyote, 72 km NE Cuba
28166	3	USA	New Mexico	San Miguel	32 km N Las Vegas
29067	ð	USA	New Mexico	San Miguel	Camp Luna, ca. 4.8 km N Las Vegas
28159	3	USA	New Mexico	Sandoval	17.4 km S, 7.7 km W Los Alamos, Cochiti
28156	ð	USA	New Mexico	Sandoval	Canyon 17.4 km S, 7.7 km W Los Alamos, Cochiti
20115	0	110.4			Canyon
29115	Ŷ	USA	New Mexico	Sandoval	Above Cochiti Canyon
29119	Ŷ	USA	New Mexico	Sandoval	East Fork Jemez River Section 2
30674	٩ م	USA	New Mexico	Santa Fe	1.7 km S, 1 km W Golden
24775	ð	USA	New Mexico	Santa Fe	1.7 km S, 1 km W Golden
27453	ð	USA	New Mexico	Santa Fe	1.7 km S, 1 km W Golden
33328	Ŷ	USA	New Mexico	Santa Fe	Cerrillos Hills
22254	ð	USA	New Mexico	Socorro	10.5 km S, 3.2 km W Socorro
22255	3	USA	New Mexico	Socorro	10.5 km S, 3.2 km W Socorro
43497	Ŷ	USA	New Mexico	Socorro	14.5 km E San Antonio
43496	3	USA	New Mexico	Socorro	14.5 km E San Antonio

Appendix 1. Continued

No.	Sex	Country	State	County	Specific Locality
32213	Ŷ	USA	New Mexico	Socorro	Beartrap Canyon
35204	3	USA	New Mexico	Socorro	Beartrap Canyon, San Mateo Mts
32210	3	USA	New Mexico	Socorro	Springtime Campground
32211	3	USA	New Mexico	Socorro	Springtime Campground
29281	Ŷ	USA	New Mexico	Socorro	Weir Tank, 2.4 km E by Road from Springtime
					Campground
29283	Ŷ	USA	New Mexico	Socorro	Weir Tank, 2.4 km E by Road from Springtime Campground
28113	3	USA	New Mexico	Valencia	30.5 km S Grants, Cave in Lava Field
28135	ð	USA	New Mexico	Valencia	30.5 km S Grants, Cave in Lava Field
36058	Q Q	USA	New Mexico	Valencia	Las Lunas
30038	Ŧ	USA			
	0			votis californicu	
52954	Ŷ	USA	Arizona	Pima	Cabeza Prieta Game Range, Papago Well
52955	Ŷ	USA	Arizona	Pima	Cabeza Prieta Game Range, Papago Well
52956	Ŷ	USA	Arizona	Pima	Cabeza Prieta Game Range, Papago Well
52958	3	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52959	Ŷ	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52960	Ŷ	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52961	Ŷ	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52962	3	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52963	Ŷ	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52964	9	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
52965	3	USA	Arizona	Yuma	Cabeza Prieta Game Range, Tule Well, 360 m
40654	Ŷ	USA	California	El Dorado	10 km E Somerset
40655	Ŷ	USA	California	El Dorado	10 km E Somerset
40656	Ŷ	USA	California	El Dorado	10 km E Somerset
40676	Ŷ	USA	California	Humboldt	12.8 km N, 2.4 km E Arcata
40677	9	USA	California	Humboldt	12.8 km N, 2.4 km E Arcata
40678	Ŷ	USA	California	Humboldt	12.8 km N, 2.4 km E Arcata
37379	3	USA	California	Mariposa	North Fork, Merced River, near Bower Cave
37380	3	USA	California	Mariposa	North Fork, Merced River, near Bower Cave
37381	3	USA	California	Mariposa	North Fork, Merced River, near Bower Cave
37363	ð	USA	California	Stanislaus	3.2 km S La Grange
32743	ð	USA	California	Stanislaus	Del Puerto Cr., 24 km W Patterson
7349	ð	USA	Colorado	La Plata	Allison
14523	ð	USA	New Mexico	Catron	Black Range, 3.2 km NE Wall Lake, Taylor Creek
13008	Ŷ	USA	New Mexico	Catron	Taylor Creek, 3.2 km NE Wall Lake
56526	Ŷ	USA	New Mexico	Grant	Big Burro Mts, Junction Saddle Rock and Black Hawk
56527	Ŷ	USA	New Mexico	Grant	Big Burro Mts, Junction Saddle Rock and Black Hawk
89160	3	USA	New Mexico	Grant	Burro Mountains
56532	3	USA	New Mexico	Grant	Red Rock, W Side Gila River, 1,230 m a.s.l.
19217	Ŷ	USA	New Mexico	Hidalgo	Dirt Tank North of New Mexico Highway 79
19007	3	USA	New Mexico	Hidalgo	Guadalupe Canyon, Guadalupe Mts
32591	3	USA	New Mexico	Hidalgo	Sycamore Well, Alamo Hueco Mts
31312	Ŷ	USA	New Mexico	Hidalgo	Sycamore Wells Alamo Hueco Mts
17292	Ŷ	USA	New Mexico	Hidalgo	Tank at East Entrance of Clanton Canyon
17921	Ŷ	USA	New Mexico	Hidalgo	Temporary Pond in Canyon Bottom
12869	3	USA	New Mexico	Luna	Mine Shaft, E Side South Peak, Tres Hermanos Mts
12009	0	USA		Luna	while shart, is side south i car, it is iterihallos Mis

Appendix 1. Continued

No.	Sex	Country	State	County	Specific Locality			
75619	δ	USA	New Mexico	Otero	32°54'N, 106°08'W, Holloman AFB. Malone Draw			
75664	Ŷ	USA	New Mexico	Otero	Lincoln National Forest, Guadalupe District			
55451	3	USA	New Mexico	Socorro	61 km S, 14 km W Magdalena			
55452	3	USA	New Mexico	Socorro	61 km S, 14 km W Magdalena			
Myotis ciliolabrum (museum)								
42777	Ŷ	Mexico	Baja California	N/A	3.2 km NE Rosarito			
43107	ð	Mexico	Sur Baja California Sur	N/A	La Grulla, Sierra De San Pedro Martir			
70879	Ŷ	Mexico	Baja California Sur	N/A	23°30'N, 110°04'W, 424 m a.s.l. La Burrera Ranch			
26867	3	USA	Arizona	Cochise	4.3 km S, 3.9 km W Portal, S Fork Cave Creek			
6754	Ŷ	USA	Colorado	La Plata	Allison			
12618	÷ Ç	USA	New Mexico	Bernalillo	Sandia Mts, Embudo Cave			
21256	÷ ¢	USA	New Mexico	Bernalillo	Cedro Canyon, Manzano Mts			
12986	ð	USA	New Mexico	Bernalillo	Embudo Cave, Sandia Mts			
13220	ð	USA	New Mexico	Bernalillo	Sandia Mts, Embudo Cave			
12912	ę	USA	New Mexico	Catron	Taylor Creek, 3.2 km NE Wall Lake, Black			
10010	0			CI	Range			
18018	Ç 1	USA	New Mexico	Chaves	Cleve Residence			
18036	3	USA	New Mexico	Chaves	Old Church on New Mexico Highway 83,			
69420	Ŷ	USA	New Mexico	Cibola	Reeves Ranch El Malpais National Monument, T7N, R12W			
69422	δ	USA	New Mexico	Cibola	South 1/2 Section El Malpais National Monument, T7N, R12W South 1/2 Section			
75667	Ŷ	USA	New Mexico	Eddy	Lincoln National Forest, Guadalupe District 32°15'N,			
24998	Ŷ	USA	New Mexico	Grant	Bar Six Canyon			
17372	+ 3	USA	New Mexico	Hidalgo	Pond on Godfrey Ranch			
21811	ð	USA	New Mexico	Lincoln	Gypsum Sink			
11801	Ŷ	USA	New Mexico	Mckinley				
75620	÷ Ç	USA USA	New Mexico	Otero	12.9 km N, 24 km E Crownpoint 32°54'N, 106°08'W; Holloman Air Force Base,			
75020	Ŧ	USA	New Mexico	Otero	Malone Draw			
18944	3	USA	New Mexico	Otero	Alamo Mountain			
40081	Ŷ	USA	New Mexico	Rio Arriba	Cebolla			
17252	¥ Q	USA USA	New Mexico	San Juan				
	+ ð	USA USA			13 km W, 1.6 km S Sheep Springs, Chuska			
10295	~		New Mexico	San Juan	Approx 3.2 km S, 3.2 km W Bloomfield			
6635	₽ ⊅	USA	New Mexico	Sandoval	Bluebird Mesa, Jemez Mts			
6636	8	USA	New Mexico	Sandoval	Bluebird Mesa, Jemez Mts			
37455	ð	USA	New Mexico	Sandoval	8 km E, 5 km S Bernalillo, Tunnel Springs			
18882	Ŷ 1	USA	New Mexico	Santa Fe	Golden			
22230	ð	USA	New Mexico	Santa Fe	State Capitol, Santa Fe			
24990	¢ o	USA	New Mexico	Sierra	Macho Canyon Spring			
43495	Ç 1	USA	New Mexico	Socorro	14.5 km E San Antonio			
31384	δ	USA	New Mexico	Socorro	Weir Tank, Springtime Campground, San Mateo Mts			
17871	Ŷ	USA	New Mexico	Taos	10.5 km N, 2.4 km E Questa, Rito Del Medio 2,438 m a.s.l.			
14312	3	USA	New Mexico	Taos	2,438 m a.s.i. 8 km S, 2.4 km El Ranchos De Taos			

Appendix 1. Continued

No.	Sex	Country	State	County	Specific Locality
17870	ð	USA	New Mexico	Taos	10.5 km N, 2.4 km E Questa, Rito Del Medio 2,438 m a.s.l.
19359	Ŷ	USA	New Mexico	Union	5 km W Kenton, Oklahoma
23679	Ŷ	USA	New Mexico	Valencia	47 km (by New Mexico Highway 6) W Los Lunas
27582	Ŷ	USA	Washington	Douglas	Douglas Creek, 2.4 km NW of Moses Coulee
27583	3	USA	Washington	Douglas	Douglas Creek, 2.4 km NW of Moses Coulee
27867	Ŷ	USA	Washington	Grant	10 km W Quincy on Babcock Ridge

Appendix 1. Continued

APPENDIX 2

Echolocation Field Samples: Arizona: Cochise Co., 8 km west Portal — 52 call voucher files recorded from 29 hand released *M. californicus* and *M. ciliolabrum*. Calls are available for download on http://talpa.unm.edu/batcall:

Myotis californi	icus ($n = 9$ 3	∂ and 8 ♀♀):	Myotis ciliolabi	rum (n = 8 3)	δ and $4 \circ \circ \circ$):
95252323.02#,	95252326.29#,	95252327.35#,	95252328.35#,	95252328.51#,	95262148.58#,
95252329.48#,	95262122.28#,	95262122.43#,	95262151.32#,	95262152.59#,	95262155.24#,
95262150.04#,	95262152.34#,	95262152.49#,	95262155.37#,	95262232.14#,	95262246.09#,
95262154.05#,	95262244.01#,	95262256.34#,	95262247.14#,	95262249.00#,	95262251.57#,
95262257.57#,	95262302.17#,	95272239.01#,	95262252.08#,	95262252.15#,	95262252.22#,
95272241.12#,	95272242.59#,	95272243.24#,	95262255.16#,	95262259.20#,	95262300.44#,
95272245.04#,	95272332.48#,	95272335.25#,	95262303.48#,	95272246.45#,	95272250.01#,
95272337.11#,	95272339.01#,	95272338.29#,	95272330.59#,	95272344.29#,	95272347.44#,
95272340.30#,	95272341.48#,	95262250.23#;	95272347.59#.		